Annals of Indian Academy of Neurology
  Users Online: 235 Home | About the Journal | InstructionsCurrent Issue | Back IssuesLogin      Print this page Email this page  Small font size Default font size Increase font size

Table of Contents
Year : 2020  |  Volume : 23  |  Issue : 5  |  Page : 644-648

Spectrum of Truncal Dystonia and Response to Treatment: A Retrospective Analysis

Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India

Date of Submission31-May-2020
Date of Acceptance23-Jun-2020
Date of Web Publication07-Oct-2020

Correspondence Address:
Sahil Mehta
Department of Neurology, Post Graduate Institute of Medical Sciences and Research, Chandigarh - 160 012
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/aian.AIAN_542_20

Rights and Permissions



Background: Presence of truncal dystonia usually points to a secondary cause of dystonia like exposure to dopamine receptor blockers or neurodegenerative illness. Rarely, it can occur as an idiopathic focal or segmental dystonia. Methods: Retrospective review of medical records and videos of patients of truncal dystonia presenting in the Botulinum Toxin Clinic of Department of Neurology at Post Graduate Institute of Medical Education and Research, Chandigarh between May 2016 and February 2019. Results: A total of 16 patients with predominant truncal dystonia were recruited. There were ten males and six females with mean age of 49.1 ± 15.1 years (range 22–70). Extensor truncal dystonia was the most common (12/16) followed by camptocormia (4/16). Various etiologies included Idiopathic Parkinson’s disease (4/16), Tardive dystonia (5/16), Neurodegeneration with brain iron accumulation (genetically confirmed) (2/16) and idiopathic (5/16). All patients were refractory to a combination of oral medications tried over a period of 1.82 ± 1.93 years. All patients received electromyographic-guided botulinum toxin in paraspinals or rectus abdominis muscles depending upon the type of dystonia. The mean dose of abobotulinum toxin used was 286.7 ± 108.6 units (range 200–500 units) for paraspinals and 297.5 ± 68.5 (range 200–350) for rectus abdominis muscles per session. Average subjective response after botulinum toxin injection session was 31.2 ± 21.5% (range 0–70). No adverse effects were reported. Conclusion: Botulinum toxin is an acceptable alternative to patients presenting with medically refractory truncal dystonia and may offer modest benefit.

Keywords: Botulinum toxin, camptocormia, Parkinson’s disease, Truncal dystonia

How to cite this article:
Mehta S, Ray S, Chakravarty K, Lal V. Spectrum of Truncal Dystonia and Response to Treatment: A Retrospective Analysis. Ann Indian Acad Neurol 2020;23:644-8

How to cite this URL:
Mehta S, Ray S, Chakravarty K, Lal V. Spectrum of Truncal Dystonia and Response to Treatment: A Retrospective Analysis. Ann Indian Acad Neurol [serial online] 2020 [cited 2021 Sep 16];23:644-8. Available from:

   Introduction Top

Truncal dystonia is characterized by involuntary contractions and postures of the paraspinal, abdominal, and chest muscles.[1] Presence of truncal dystonia usually points to a secondary cause of dystonia-like exposure to dopamine receptor blockers or several neurodegenerative conditions.[2] Rarely, it can also present as an idiopathic focal or segmental dystonia.[3] Depending on the direction of the dystonic movement, it can be classified into flexion, extension, or lateral flexion types. Camptocormia is defined as forward flexion of the thoracolumbar spine (>45 degrees) which is characterized by overactivation of the rectus abdominis muscles.[4] Opisthotonus is defined as an extension posturing of the spine resulting in arching of the back due to overactivation of thoracic and lumbar paraspinal/paravertebral muscles.[1] Lateral flexion of the spine also known as the Pisa syndrome occurs due to overactivity in the internal and external oblique muscles in conjunction with anterior abdominal and paravertebral muscles.[5]

Truncal dystonia usually responds poorly to medical treatment in the form of dopaminergic therapy, anticholinergics and various other drugs used in the armamentarium to treat dystonia.[1] It can seriously impair the quality of life causing difficulty in walking, pain and if untreated, can lead to fixed postures and deformities. Physical therapy, botulinum toxin treatment, and deep brain stimulation have each been tried in small number of cases with variable results.[6],[7],[8]

Botulinum toxin treatment of the dystonic muscles have shown to improve the abnormal posture, pain associated with abnormal contractions and gait with persistent improvement at 3 months.[1],[6],[9],[10] However, the presentation of dystonia and pattern of improvement in each of the published studies was different from each other.[1],[6],[9],[10] With this background in mind, we attempted to identify the clinical and demographic profile of patients presenting with truncal dystonia, characterize the pattern of involvement and assess the response to treatment from a tertiary care hospital.

   Methods Top

We retrospectively reviewed the medical records and videos of more than 600 patients who presented to the Botulinum toxin clinic of Department of Neurology at Post Graduate Institute of Medical Education and Research, Chandigarh between May 2016 to February 2019. Patients with predominant truncal dystonia were included in the study. Truncal dystonia could exist in isolation or in association with dystonia in other body parts. Patients who did not achieve substantial clinical benefit from a trial of oral medications for at least 3 months were selected to be treated with botulinum toxin. Abobotulinum toxin was used in all the patients and the oral medications were continued throughout the treatment period. Abobotulinum toxin was reconstituted with 2.5 ml of unpreserved normal saline (concentration of 20 U per 0.1 ml). Posterior paraspinal muscles were selected for extensor truncal dystonia and rectus abdominis muscles were selected for camptocormia. Both the paraspinals and rectus abdominis muscles were injected under electromyographic guidance. The number of injection sites and dose was individualized depending upon the clinical severity and/or degree of muscle hypertrophy. All the patients were reassessed and videotaped 1 month after the injections when the maximal benefit of botulinum toxin is expected to occur. The outcome was assessed based on a single question evaluating improvement in pain, dystonia and functional status and was scored between 0 and 100. Improvement was assessed only for truncal dystonia in patients with multifocal, segmental, or generalized distribution. The response was measured only for the first injection session in patients who underwent multiple sessions. The study was approved by institute ethics committee (INT/IEC/2020/SPL-419). Patients and their caregivers signed informed consent for botulinum toxin injections.

   Results Top

A total of sixteen patients with predominant truncal dystonia were found. There were ten males and six females. Mean age was 49.1 ± 15.1 years (range 22–70 years). Various etiologies included Idiopathic Parkinson’s disease (4), Tardive (5), Idiopathic (5), and Pantothenate kinase associated neurodegeneration (2) [Table 1]. Mean duration of the disease was 4.63 ± 3.7 years (range 2 months–14 years). The mean interval between the onset of parkinsonism and truncal dystonia was 17 ± 9.5 months (4–24 months) in patients with IPD. Ten patients exhibited dystonia in other body parts in addition to truncal dystonia. Three patients had blepharospasm, ten patients had associated cervical dystonia and eight patients had associated involvement of pectoral muscles. Extensor truncal dystonia was more commonly found than flexion predominant dystonia [Table 1]. Patients were tried on multiple medications in combination before proceeding to botulinum toxin injections. These included trihexiphenidyl (9 patients), tetrabenazine (7 patients), clonazepam (11 patients), baclofen (3 patients), levodopa (8 patients), and carbamazepine (1 patient). The mean duration of medications before the first session of botulinum toxin injection was 1.82 ± 1.93 years (range 2 months–6 years). The mean number of medications was 2.8 ± 0.6 (range 1–6). The mean improvement with medications was 13.8 ± 12.7% (range 0–30) [Table 1]. No relief or suboptimal relief with oral medications was the main indication for botulinum toxin injections. The mean dose of abobotulinum toxin used was 286.7 ± 108.6 units (range 200–500 units) for paraspinals and 297.5 ± 68.5 (range 200–350) for rectus abdominis muscles per session. Average subjective response after botulinum toxin injection session was 31.2 ± 21.5% (range 0–70) [Videos 1 and 2]. One patient of Idiopathic Parkinson’s disease with camptocormia and another with idiopathic dystonia did not show any subjective improvement in their dystonia. The mean duration of effect was 3 months. The mean number of botulinum toxin injection sessions were 2.5 ± 1.6 (range 1-7). The mean interval between the injections was 4.8 ± 1.9 months (range 3–9) [Table 1]. The mean dose of abobotulinum toxin injected in the different muscles is described in [Table 1]. No adverse effects were reported in our patients. The response with botulinum toxin injection was almost the same in all types of dystonia and for all pathological indications averaging about 30–35% [Table 1].
Table 1: Patient Characteristics

Click here to view

   Discussion Top

Truncal dystonia can occur in isolation or in combination with dystonia in other body parts in a segmental, multifocal or generalized pattern.[3] It is much more commonly seen as a part of neurodegenerative illness like Parkinson’s disease, atypical parkinsonian syndromes, neurodegeneration with brain iron accumulation or as a tardive syndrome secondary to antipsychotics. However, it can also occur as an idiopathic variety as reported previously.[3],[11] The largest case series of eighteen patients of axial predominant primary truncal dystonia is reported by Bhatia et al.[3] Ehlrich et al. reported seven patients of idiopathic truncal dystonia.[11] In both the series, flexion was the most common direction of dystonic movement. Around one-third of patients in our series belonged to the idiopathic variety. Truncal extension was the most common direction of dystonic movement in contrast to the reports in the literature where flexion is more commonly reported.[3],[11]

Around one-third of patients with Parkinson’s disease can manifest dystonia.[12] It is more prevalent in young onset Parkinson’s disease and can occur in untreated PD patients or as a complication of dopaminergic therapy. Camptocormia and Pisa syndrome can occur in both PD and atypical parkinsonism particularly multiple system atrophy.[5] As reported by Bonanni et al., prevalence of axial dystonia was 4.4% in their cohort of 1400 patients of Parkinsonism. Out of these, camptocormia was identified in 2.6% and lateral axial dystonia in 1.9% in patients presenting with dopa responsive Parkinsonism in their study.[9] Four patients in our series were suffering from Parkinson’s disease; 2 had camptocormia and 2 had extensor truncal dystonia.

Five patients developed truncal dystonia as a result of exposure to dopamine receptor blockers. The drugs included trifluoperazine, haloperidol, risperidone, and levosulpiride. Extensor truncal dystonia was much more common which is consistent with the existing literature.[13] Only one patient developed levosulpiride-induced camptocormia. She had normal 18F DOPA PET scan thus essentially ruling out parkinsonism.

Two of our patients had genetically proven neurodegeneration with brain iron accumulation (PANK2 mutation positive). Both these patients presented with action induced dystonic opisthotonus in their thirties. MRI brain showed the characteristic “eye of the tiger sign”. Dystonic opisthotonus can be a clinical clue to the diagnosis of neurodegeneration with brain iron accumulation.[14]

Truncal dystonia is highly disabling and is usually refractory to combination of multiple oral medications. Our patients showed only subjective improvement of 13% with a combination of oral drugs.

Comella et al. first reported the use of botulinum toxin for extensor truncal dystonia.[1] They reported mean improvement of 37% 1 month after the botulinum toxin injection. Maximum improvement occurred in the pain secondary to dystonia to the extent of 65%. Patients in our series also reported a modest benefit of 31%. Bonnani et al. studied the efficacy of botulinum toxin in lateral axial dystonia in levodopa responsive parkinsonism in their double-blind randomized cross over study.[9] Patients receiving botulinum toxin showed an improvement of 50–85.7% while there was no improvement in placebo group. Other case series on efficacy of botulinum toxin in truncal dystonia are tabulated in [Table 2].
Table 2: Synopsis of reported case series and case reports on use of botulinum toxin in truncal dystonia

Click here to view

Main limitation of our study is that it was a retrospective analysis. Second, the response to treatment was subjective based on patient responses and not objective based on video and scales.

   Conclusion Top

Truncal dystonia is a relatively rare presentation. Although it commonly presents as secondary dystonias, it may occur as an idiopathic variety. Both flexion and extension varieties can be seen. Botulinum toxin may be used as an effective and safe option in the treatment of this condition that is usually refractory to oral medications.

Statement of informed consent

The patients signed informed consent for publication in a medical journal.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.


   References Top

Comella CL, Shannon KM, Jaglin J. Extensor truncal dystonia: Successful treatment with botulinum toxin injections. Mov Disord 1998;13:552-5.  Back to cited text no. 1
Stamelou M, Lai SC, Aggarwal A, Schneider SA, Houlden H, Yeh TH, et al. Dystonic opisthotonus: A ‘red flag’ for neurodegeneration with brain iron accumulation syndromes? Mov Disord 2013;28:1325-9.  Back to cited text no. 2
Bhatia KP, Quinn NP, Marsden CD. Clinical features and natural history of axial predominant adult onset primary dystonia. J Neurol Neurosurg Psychiatry 1997;63:788-91.  Back to cited text no. 3
Azher SN, Jankovic J. Camptocormia: Pathogenesis, classification, and response to therapy. Neurology 2005;65:355-9.  Back to cited text no. 4
Barone P, Santangelo G, Amboni M, Pellecchia MT, Vitale C. Pisa syndrome in Parkinson’s disease and parkinsonism: Clinical features, pathophysiology, and treatment. Lancet Neurol 2016;15:1063-74.  Back to cited text no. 5
Tassorelli C, De Icco R, Alfonsi E, Bartolo M, Serrao M, Avenali M, et al. Botulinum toxin type A potentiates the effect of neuromotor rehabilitation of Pisa syndrome in Parkinson disease: A placebo controlled study. Park Relat Disord 2014;20:1140-4.  Back to cited text no. 6
Bartolo M, Serrao M, Tassorelli C, Don R, Ranavolo A, Draicchio F, et al. Four-week trunk-specific rehabilitation treatment improves lateral trunk flexion in Parkinson’s disease. Mov Disord 2010;25:325-31.  Back to cited text no. 7
Hagenacker T, Gerwig M, Gasser T, Miller D, Kastrup O, Jokisch D, et al. Pallidal deep brain stimulation relieves camptocormia in primary dystonia. J Neurol 2013;260:1833-7.  Back to cited text no. 8
Bonanni L, Thomas A, Varanese S, Scorrano V, Onofrj M. Botulinum toxin treatment of lateral axial dystonia in Parkinsonism. Mov Disord 2007;22:2097-103.  Back to cited text no. 9
Todo H, Yamasaki H, Ogawa G, Nishida K, Futamura N, Funakawa I. Injection of onabotulinum toxin a into the bilateral external oblique muscle attenuated camptocormia: A prospective open-label study in six patients with Parkinson’s disease. Neurol Ther 2018;7:365-71.  Back to cited text no. 10
Ehrlich DJ, Frucht SJ. The phenomenology and treatment of idiopathic adult-onset truncal dystonia: A retrospective review. J Clin Mov Disord 2016;3:15.  Back to cited text no. 11
Shetty AS, Bhatia KP, Lang AE. Dystonia and Parkinson’s disease: What is the relationship? Neurobiol Dis 2019;132:104462.  Back to cited text no. 12
Krack P, Schneider S, Deuschl G. Geste device in tardive dystonia with retrocollis and opisthotonic posturing. Mov Disord 1998;13:155-7.  Back to cited text no. 13
Mehta S, Lal V. Neurodegeneration with brain iron accumulation: Two additional cases with dystonic opisthotonus. Tremor Other Hyperkinet Mov (N Y) 2019;9:1-3. doi: 10.7916/tohm.v0.683.  Back to cited text no. 14
Fietzek UM, Schroeteler FE, Ceballos-Baumann AO. Goal attainment after treatment of parkinsonian camptocormia with botulinum toxin. Mov Disord 2009;2413:2027-8. doi:10.1002/mds.22676.  Back to cited text no. 15
Colosimo C, Salvatori FM. Injection of the iliopsoas muscle with botulinum toxin in camptocormia. Mov Disord 2009;24:316-7. doi:10.1002/mds.22249.  Back to cited text no. 16
von Coelln R, Raible A, Gasser T, Asmus F. Ultrasound-guided injection of the iliopsoas muscle with botulinum toxin in camptocormia. Mov Disord 2008;23:889-92. doi:10.1002/mds.21967.  Back to cited text no. 17
Wijemanne S, Jimenez-Shahed J. Improvement in dystonic camptocormia following botulinum toxin injection to the external oblique muscle. Parkinsonism Relat Disord 2014;20:1106-7. doi:10.1016/j.parkreldis.2014.06.002.  Back to cited text no. 18
Yadav R, Ansari AZ, Surathi P, Srinivas D, Somanna S, Pal P. Bilateral pallidal deep brain stimulation in idiopathic dystonic camptocormia. Neurol India 2015;63:911-4. doi:10.4103/0028-3886.170080.  Back to cited text no. 19
[PUBMED]  [Full text]  


  [Table 1], [Table 2]


Print this article  Email this article


    Similar in PUBMED
 Related articles
    Article in PDF (310 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  

    Article Tables

 Article Access Statistics
    PDF Downloaded37    
    Comments [Add]    

Recommend this journal