Annals of Indian Academy of Neurology
  Users Online: 11815 Home | About the Journal | InstructionsCurrent Issue | Back IssuesLogin      Print this page Email this page  Small font size Default font size Increase font size

    Article Cited by others

REVIEW ARTICLE

The effect of curcumin (turmeric) on Alzheimer's disease: An overview

Mishra Shrikant, Palanivelu Kalpana

Year : 2008| Volume: 11| Issue : 1 | Page no: 13-19

   This article has been cited by
 
1 Structure-Activity Relationship of Dibenzylideneacetone Analogs Against the Neglected Disease Pathogen, Trypanosoma brucei
Karol R. Francisco, Ludovica Monti, Wenqian Yang, Hayoung Park, Lawrence J. Liu, Dilini K. Amarasinghe, Marianna Nalli, Carlos Roberto Polaquini, Luis O. Regasini, Antônio Eduardo Miller Crotti, Romano Silvestri, Lizandra Guidi Magalhães, Conor R. Caffrey
Bioorganic & Medicinal Chemistry Letters. 2023; : 129123
[Pubmed]  [Google Scholar] [DOI]
2 In vitro cytotoxicity of curcuminoids against head and neck cancer HNO97 cell line
Z. Almalki, M. Algregri, M. Alhosin, M. Alkhaled, S. Damiati, M. A. Zamzami
Brazilian Journal of Biology. 2023; 83
[Pubmed]  [Google Scholar] [DOI]
3 Neuroprotective Potential of Curcuminoids in Modulating Alzheimer’s Disease via Multiple Signaling Pathways
Anam Shabbir, Kanwal Rehman, Moazzama Akbar, Muhammad Sajid Hamid Akash
Current Medicinal Chemistry. 2022; 29(34): 5560
[Pubmed]  [Google Scholar] [DOI]
4 Ameliorative Effects of Phytomedicines on Alzheimer’s Patients
Rekha Khandia, Neerja Viswanathan, Shailja Singhal, Taha Alqahtani, Mohannad A. Almikhlafi, Alexander Nikolaevich Simonov, Ghulam Md. Ashraf
Current Alzheimer Research. 2022; 19(6): 420
[Pubmed]  [Google Scholar] [DOI]
5 PLGA-Based Curcumin Delivery System: An Interesting Therapeutic Approach in the Treatment of Alzheimer’s Disease
Sanaz Keshavarz Shahbaz, Khadijeh Koushki, Thozhukat Sathyapalan, Muhammed Majeed, Amirhossein Sahebkar
Current Neuropharmacology. 2022; 20(2): 309
[Pubmed]  [Google Scholar] [DOI]
6 Therapeutic Potential of Different Natural Products for the Treatment of Alzheimer’s Disease
Biswajit Chakraborty, Nobendu Mukerjee, Swastika Maitra, Mehrukh Zehravi, Dattatreya Mukherjee, Arabinda Ghosh, Ehab El Sayed Massoud, Md. Habibur Rahman, Domenico Nuzzo
Oxidative Medicine and Cellular Longevity. 2022; 2022: 1
[Pubmed]  [Google Scholar] [DOI]
7 Emerging Roles of the Copper–CTR1 Axis in Tumorigenesis
Yaqing Su, Xiaomei Zhang, Shaoqiang Li, Wei Xie, Jianping Guo
Molecular Cancer Research. 2022; 20(9): 1339
[Pubmed]  [Google Scholar] [DOI]
8 Upregulation of ribosome complexes at the blood-brain barrier in Alzheimer's disease patients
Masayoshi Suzuki, Kenta Tezuka, Takumi Handa, Risa Sato, Hina Takeuchi, Masaki Takao, Mitsutoshi Tano, Yasuo Uchida
Journal of Cerebral Blood Flow & Metabolism. 2022; : 0271678X22
[Pubmed]  [Google Scholar] [DOI]
9 Potential implications of polyphenolic compounds in neurodegenerative diseases
Ruidie Shi, Daili Gao, Rostyslav Stoika, Kechun Liu, Attila Sik, Meng Jin
Critical Reviews in Food Science and Nutrition. 2022; : 1
[Pubmed]  [Google Scholar] [DOI]
10 Role of multi-targeted bioactive natural molecules and their derivatives in the treatment of Alzheimer’s disease: an insight into structure-activity relationship
Debojyoti Halder, Subham Das, Jeyaprakash R S, Alex Joseph
Journal of Biomolecular Structure and Dynamics. 2022; : 1
[Pubmed]  [Google Scholar] [DOI]
11 Box Behnken Design based formulation optimization and characterization of spray dried rutin loaded nanosuspension: State of the art
Omji Porwal
South African Journal of Botany. 2022;
[Pubmed]  [Google Scholar] [DOI]
12 Curcumin derivative 1, 2-bis [(3E, 5E)-3, 5-bis [(2-chlorophenyl) methylene]-4-oxo-1-piperidyl] ethane-1, 2-dione (ST03) induces mitochondria mediated apoptosis in ovarian cancer cells and inhibits tumor progression in EAC mouse model
Jinsha Koroth, Raghunandan Mahadeva, Febina Ravindran, Tanvi R Parashar, Vinay Teja, Subhas S Karki, Bibha Choudhary
Translational Oncology. 2022; 15(1): 101280
[Pubmed]  [Google Scholar] [DOI]
13 Near-Infrared Fluorescent Probes as Imaging and Theranostic Modalities for Amyloid-Beta and Tau Aggregates in Alzheimer’s Disease
Himanshu Rai, Sarika Gupta, Saroj Kumar, Jian Yang, Sushil K. Singh, Chongzhao Ran, Gyan Modi
Journal of Medicinal Chemistry. 2022;
[Pubmed]  [Google Scholar] [DOI]
14 Curcumin piperidone derivatives induce anti-proliferative and anti-migratory effects in LN-18 human glioblastoma cells
Nur Syahirah Che Razali, Kok Wai Lam, Nor Fadilah Rajab, A. Rahman A. Jamal, Nurul Farahana Kamaluddin, Kok Meng Chan
Scientific Reports. 2022; 12(1)
[Pubmed]  [Google Scholar] [DOI]
15 Dementia Prevention in Clinical Practice
Kellyann Niotis, Kiarra Akiyoshi, Caroline Carlton, Richard Isaacson
Seminars in Neurology. 2022;
[Pubmed]  [Google Scholar] [DOI]
16 Curcumin improves the ability of donepezil to ameliorate memory impairment in Drosophila melanogaster: involvement of cholinergic and cnc/Nrf2-redox systems
Opeyemi Babatunde Ogunsuyi, Olayemi Philemon Aro, Ganiyu Oboh, Olawande Chinedu Olagoke
Drug and Chemical Toxicology. 2022; : 1
[Pubmed]  [Google Scholar] [DOI]
17 The promising role of natural products in Alzheimer's disease
Michelle Melgarejo da Rosa, Luciclaudio Cassimiro de Amorim, João Victor de Oliveira Alves, Irivânia Fidélis da Silva Aguiar, Fernanda Granja da Silva Oliveira, Márcia Vanusa da Silva, Maria Tereza Correia dos Santos
Brain Disorders. 2022; 7: 100049
[Pubmed]  [Google Scholar] [DOI]
18 Role of Nrf2 in Aging, Alzheimer’s and Other Neurodegenerative Diseases
Mathew George, Matthan Tharakan, John Culberson, Arubala P Reddy, P. Hemachandra Reddy
Ageing Research Reviews. 2022; : 101756
[Pubmed]  [Google Scholar] [DOI]
19 Experience of Western Herbal Medicine practitioners in supporting brain health in mid-life and older patients: A qualitative research study
Surinder Hundal, Julia Green
Journal of Herbal Medicine. 2022; 32: 100547
[Pubmed]  [Google Scholar] [DOI]
20 Aducanumab: A new hope in Alzheimer's Disease
Rouchan Ali, Ghanshyam Das Gupta, Pooja A. Chawla
Health Sciences Review. 2022; : 100039
[Pubmed]  [Google Scholar] [DOI]
21 The protective effects of curcumin on depression: Genes, transcription factors, and microRNAs involved
Hai Duc Nguyen, Min-Sun Kim
Journal of Affective Disorders. 2022; 319: 526
[Pubmed]  [Google Scholar] [DOI]
22 Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy
Mehrab Pourmadadi, Parisa Abbasi, Mohammad Mahdi Eshaghi, Ali Bakhshi, Amanda-Lee Ezra Manicum, Abbas Rahdar, Sadanand Pandey, Sapana Jadoun, Ana M. Díez-Pascual
Journal of Drug Delivery Science and Technology. 2022; : 103982
[Pubmed]  [Google Scholar] [DOI]
23 Unraveling the effect of surfactant chain length on the binding interaction of curcumin with cationic and non-ionic micelles
Priyabrata Das, Pabitra Mandal, Debatri Shit, Smritimoy Pramanik
Journal of Surfactants and Detergents. 2022;
[Pubmed]  [Google Scholar] [DOI]
24 Ameliorating potential of curcumin and its analogue in central nervous system disorders and related conditions: A review of molecular pathways
Priyanka Joshi, Akansha Bisht, Sushil Joshi, Deepak Semwal, Neelesh Kumar Nema, Jaya Dwivedi, Swapnil Sharma
Phytotherapy Research. 2022;
[Pubmed]  [Google Scholar] [DOI]
25 Cholesterol Mediated Stable Vesicles: A Nano Drug Delivery Vehicle for Anti-cancer Drugs Curcumin and 5-Fluorourecil
Hiral Ukani, Pratyush, Sugam Kumar, Vinod K Aswal, Azza A. Al-Ghamdi, Naved I. Malek
ChemistrySelect. 2022; 7(33)
[Pubmed]  [Google Scholar] [DOI]
26 Curcumin for attention-deficit–hyperactivity disorder: a systematic review and preliminary behavioral investigation
Lélia Lilianna Borges de Sousa Macedo, Flavia Tasmin Techera Antunes, Willyane de Andrade Alvarenga, Mara Cristina Carvalho Batista, Mayara Storel Beserra de Moura, Mariane Nunes Lima Farias, Emanuelle Sistherenn Caminski, Eliane Dallegrave, Ivana Grivicich, Alessandra Hübner de Souza
Naunyn-Schmiedeberg's Archives of Pharmacology. 2022;
[Pubmed]  [Google Scholar] [DOI]
27 Microglia in Alzheimer’s Disease: An Unprecedented Opportunity as Prospective Drug Target
Bhargavi Kulkarni, Natália Cruz-Martins, Dileep Kumar
Molecular Neurobiology. 2022;
[Pubmed]  [Google Scholar] [DOI]
28 Molecular Insights into Therapeutic Potentials of Hybrid Compounds Targeting Alzheimer’s Disease
Ankit Jana, Arkadyuti Bhattacharjee, Sabya Sachi Das, Avani Srivastava, Akshpita Choudhury, Rahul Bhattacharjee, Swagata De, Asma Perveen, Danish Iqbal, Piyush Kumar Gupta, Saurabh Kumar Jha, Shreesh Ojha, Sandeep Kumar Singh, Janne Ruokolainen, Niraj Kumar Jha, Kavindra Kumar Kesari, Ghulam Md Ashraf
Molecular Neurobiology. 2022;
[Pubmed]  [Google Scholar] [DOI]
29 Formulation and Development of Curcumin–Piperine-Loaded S-SNEDDS for the Treatment of Alzheimer’s Disease
Shmmon Ahmad, Abdul Hafeez
Molecular Neurobiology. 2022;
[Pubmed]  [Google Scholar] [DOI]
30 Roles of Curcumin on Cognitive Impairment Induced by a Mixture of Heavy Metals
Hai Duc Nguyen, Min-Sun Kim
Neurotoxicity Research. 2022;
[Pubmed]  [Google Scholar] [DOI]
31 The Multifaceted Role of Neuroprotective Plants in Alzheimer’s Disease Treatment
Tarek Zieneldien, Janice Kim, Chuanhai Cao
Geriatrics. 2022; 7(2): 24
[Pubmed]  [Google Scholar] [DOI]
32 Natural Plant Compounds: Does Caffeine, Dipotassium Glycyrrhizinate, Curcumin, and Euphol Play Roles as Antitumoral Compounds in Glioblastoma Cell Lines?
Gabriel Alves Bonafé, Matheus Negri Boschiero, André Rodrigues Sodré, Jussara Vaz Ziegler, Thalita Rocha, Manoela Marques Ortega
Frontiers in Neurology. 2022; 12
[Pubmed]  [Google Scholar] [DOI]
33 Neurotechnological Approaches to the Diagnosis and Treatment of Alzheimer’s Disease
Shen Ning, Mehdi Jorfi, Shaun R. Patel, Doo Yeon Kim, Rudolph E. Tanzi
Frontiers in Neuroscience. 2022; 16
[Pubmed]  [Google Scholar] [DOI]
34 Anticonvulsant Effect of Turmeric and Resveratrol in Lithium/Pilocarpine-Induced Status Epilepticus in Wistar Rats
Isaac Zamora-Bello, Eduardo Rivadeneyra-Domínguez, Juan Francisco Rodríguez-Landa
Molecules. 2022; 27(12): 3835
[Pubmed]  [Google Scholar] [DOI]
35 Advances on Therapeutic Strategies for Alzheimer’s Disease: From Medicinal Plant to Nanotechnology
Nasser A. Hassan, Asma K. Alshamari, Allam A. Hassan, Mohamed G. Elharrif, Abdullah M. Alhajri, Mohammed Sattam, Reham R. Khattab
Molecules. 2022; 27(15): 4839
[Pubmed]  [Google Scholar] [DOI]
36 The Antioxidative Effects of Picein and Its Neuroprotective Potential: A Review of the Literature
Leila Elyasi, Jessica M. Rosenholm, Fatemeh Jesmi, Mehrdad Jahanshahi
Molecules. 2022; 27(19): 6189
[Pubmed]  [Google Scholar] [DOI]
37 High Yield Synthesis of Curcumin and Symmetric Curcuminoids: A “Click” and “Unclick” Chemistry Approach
Marco A. Obregón-Mendoza, William Meza-Morales, Yair Alvarez-Ricardo, M. Mirian Estévez-Carmona, Raúl G. Enríquez
Molecules. 2022; 28(1): 289
[Pubmed]  [Google Scholar] [DOI]
38 Post-Ischemic Brain Neurodegeneration in the Form of Alzheimer’s Disease Proteinopathy: Possible Therapeutic Role of Curcumin
Ryszard Pluta, Wanda Furmaga-Jablonska, Slawomir Januszewski, Stanislaw J. Czuczwar
Nutrients. 2022; 14(2): 248
[Pubmed]  [Google Scholar] [DOI]
39 Surface Modification of Curcumin Microemulsions by Coupling of KLVFF Peptide: A Prototype for Targeted Bifunctional Microemulsions
Rungsinee Phongpradist, Wisanu Thongchai, Kriangkrai Thongkorn, Suree Lekawanvijit, Chuda Chittasupho
Polymers. 2022; 14(3): 443
[Pubmed]  [Google Scholar] [DOI]
40 Addressing the psychological consequences of COVID-19 pandemic through Ayurveda: a positive approach for a positive perspective
Shagufta Raahat, Meenakshi Sharma, SisirK Mandal, AnandB More, Shalini Rai
Journal of Indian System of Medicine. 2021; 9(2): 82
[Pubmed]  [Google Scholar] [DOI]
41 Emerging Applications of Nanotechnology in Healthcare Systems: Grand Challenges and Perspectives
Sumaira Anjum, Sara Ishaque, Hijab Fatima, Wajiha Farooq, Christophe Hano, Bilal Haider Abbasi, Iram Anjum
Pharmaceuticals. 2021; 14(8): 707
[Pubmed]  [Google Scholar] [DOI]
42 The Immunopathogenesis of Alzheimer’s Disease Is Related to the Composition of Gut Microbiota
Friedrich Leblhuber, Daniela Ehrlich, Kostja Steiner, Simon Geisler, Dietmar Fuchs, Lukas Lanser, Katharina Kurz
Nutrients. 2021; 13(2): 361
[Pubmed]  [Google Scholar] [DOI]
43 Acute Administration of Bioavailable Curcumin Alongside Ferrous Sulphate Supplements Does Not Impair Iron Absorption in Healthy Adults in a Randomised Trial
Helena Tiekou Lorinczova, Gulshanara Begum, Derek Renshaw, Mohammed Gulrez Zariwala
Nutrients. 2021; 13(7): 2300
[Pubmed]  [Google Scholar] [DOI]
44 Allium hookeri Extracts Improve Scopolamine-Induced Cognitive Impairment via Activation of the Cholinergic System and Anti-Neuroinflammation in Mice
Ji-Hye Choi, Eun-Byeol Lee, Hwan-Hee Jang, Youn-Soo Cha, Yong-Soon Park, Sung-Hyen Lee
Nutrients. 2021; 13(8): 2890
[Pubmed]  [Google Scholar] [DOI]
45 The Decoration of ZnO Nanoparticles by Gamma Aminobutyric Acid, Curcumin Derivative and Silver Nanoparticles: Synthesis, Characterization and Antibacterial Evaluation
Chanon Talodthaisong, Kittiya Plaeyao, Chatariga Mongseetong, Wissuta Boonta, Oranee Srichaiyapol, Rina Patramanon, Navaphun Kayunkid, Sirinan Kulchat
Nanomaterials. 2021; 11(2): 442
[Pubmed]  [Google Scholar] [DOI]
46 Microglia Specific Drug Targeting Using Natural Products for the Regulation of Redox Imbalance in Neurodegeneration
Shashank Kumar Maurya, Neetu Bhattacharya, Suman Mishra, Amit Bhattacharya, Pratibha Banerjee, Sabyasachi Senapati, Rajnikant Mishra
Frontiers in Pharmacology. 2021; 12
[Pubmed]  [Google Scholar] [DOI]
47 Beneficial Effects of Epigallocatechin-3-O-Gallate, Chlorogenic Acid, Resveratrol, and Curcumin on Neurodegenerative Diseases
Ryuuta Fukutomi, Tomokazu Ohishi, Yu Koyama, Monira Pervin, Yoriyuki Nakamura, Mamoru Isemura
Molecules. 2021; 26(2): 415
[Pubmed]  [Google Scholar] [DOI]
48 Curcumin Loaded Dendrimers Specifically Reduce Viability of Glioblastoma Cell Lines
John Gallien, Bhairavi Srinageshwar, Kellie Gallo, Gretchen Holtgrefe, Sindhuja Koneru, Paulina Sequeiros Otero, Catalina Alvarez Bueno, Jamie Mosher, Alison Roh, D. Stave Kohtz, Douglas Swanson, Ajit Sharma, Gary Dunbar, Julien Rossignol
Molecules. 2021; 26(19): 6050
[Pubmed]  [Google Scholar] [DOI]
49 In Vitro Phytochemical Screening, Cytotoxicity Studies of Curcuma longa Extracts with Isolation and Characterisation of Their Isolated Compounds
Madhuri Grover, Tapan Behl, Aayush Sehgal, Sukhbir Singh, Neelam Sharma, Tarun Virmani, Mahesh Rachamalla, Abdullah Farasani, Sridevi Chigurupati, Amal M. Alsubayiel, Shatha Ghazi Felemban, Mohit Sanduja, Simona Bungau
Molecules. 2021; 26(24): 7509
[Pubmed]  [Google Scholar] [DOI]
50 Polyphenols as Potential Metal Chelation Compounds Against Alzheimer’s Disease
Johant Lakey-Beitia, Andrea M. Burillo, Giovanni La Penna, Muralidhar L. Hegde, K.S. Rao, K.S. Jagannatha Rao, Gabrielle B. Britton, Luisa Lilia Rocha Arrieta, Norberto Garcia-Cairasco, Alberto Lazarowski, Adrián Palacios, Antoni Camins Espuny, Ricardo B. Maccioni
Journal of Alzheimer's Disease. 2021; 82(s1): S335
[Pubmed]  [Google Scholar] [DOI]
51 Nanomedicine: A Promising Way to Manage Alzheimer’s Disease
Nazeer Hussain Khan, Maria Mir, Ebenezeri Erasto Ngowi, Ujala Zafar, Muhammad Mahtab Aslam Khan Khakwani, Saadullah Khattak, Yuan-Kun Zhai, En-She Jiang, Meng Zheng, Shao-Feng Duan, Jian-She Wei, Dong-Dong Wu, Xin-Ying Ji
Frontiers in Bioengineering and Biotechnology. 2021; 9
[Pubmed]  [Google Scholar] [DOI]
52 Ophthalmic Biomarkers for Alzheimer’s Disease: A Review
Ayesha Majeed, Ben Marwick, Haoqing Yu, Hassan Fadavi, Mitra Tavakoli
Frontiers in Aging Neuroscience. 2021; 13
[Pubmed]  [Google Scholar] [DOI]
53 The Interplay of the Unfolded Protein Response in Neurodegenerative Diseases: A Therapeutic Role of Curcumin
Sitabja Mukherjee, Awdhesh Kumar Mishra, G. D. Ghouse Peer, Sali Abubaker Bagabir, Shafiul Haque, Ramendra Pati Pandey, V. Samuel Raj, Neeraj Jain, Atul Pandey, Santosh Kumar Kar
Frontiers in Aging Neuroscience. 2021; 13
[Pubmed]  [Google Scholar] [DOI]
54 Curcuma longa extract ameliorates motor and cognitive deficits of 6-hydroxydopamine-infused Parkinson’s disease model rats
Sujan Bhowmick, Marzan Sarkar, Jakir Hussain, Mehedi Hassan, Mafroz Basunia, Taslima Nahar, Azizur Rahman, Borhan Uddin, Shahdat Hossain
Advances in Traditional Medicine. 2021;
[Pubmed]  [Google Scholar] [DOI]
55 Nutrition and Dementia
Y. Brockdorf, John E. Morley
The journal of nutrition, health & aging. 2021; 25(5): 590
[Pubmed]  [Google Scholar] [DOI]
56 Analgesic effects of intravenous curcumin in the rat formalin test
Hwoe-Gyeong Ok, Hyeon Woo Kim, Hae-Kyu Kim
Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2021; 101(3-4): 337
[Pubmed]  [Google Scholar] [DOI]
57 Cellular uptake and apoptotic properties of gemini curcumin in gastric cancer cells
Ali Emami, Esmaeil Babaei, Alaadin Nagishbandi, Hewa Jalal Azeez, Mohammad Ali Hosseinpour Feizi, Ashraf Golizadeh
Molecular Biology Reports. 2021; 48(11): 7215
[Pubmed]  [Google Scholar] [DOI]
58 A comprehensive review of the therapeutic potential of curcumin nanoformulations
Khadijeh Khezri, Majid Saeedi, Hassan Mohammadamini, Abbas Seyed Zakaryaei
Phytotherapy Research. 2021; 35(10): 5527
[Pubmed]  [Google Scholar] [DOI]
59 The clinical use of curcumin on neurological disorders: An updated systematic review of clinical trials
Maryam Mohseni, Amirhossein Sahebkar, Gholamreza Askari, Thomas P. Johnston, Babak Alikiaii, Mohammad Bagherniya
Phytotherapy Research. 2021;
[Pubmed]  [Google Scholar] [DOI]
60 Novel concept of exosome-like liposomes for the treatment of Alzheimer's disease
Mário Fernandes, Ivo Lopes, Luana Magalhães, Marisa P. Sárria, Raul Machado, João Carlos Sousa, Cláudia Botelho, José Teixeira, Andreia C. Gomes
Journal of Controlled Release. 2021; 336: 130
[Pubmed]  [Google Scholar] [DOI]
61 Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence
Sumant Saini, Teenu Sharma, Atul Jain, Harmanjot Kaur, O.P. Katare, Bhupinder Singh
Colloids and Surfaces B: Biointerfaces. 2021; 205: 111838
[Pubmed]  [Google Scholar] [DOI]
62 Polyphenols as adjunctive treatments in psychiatric and neurodegenerative disorders: Efficacy, mechanisms of action, and factors influencing inter-individual response
Gerwyn Morris, Elizabeth Gamage, Nikolaj Travica, Michael Berk, Felice N. Jacka, Adrienne O'Neil, Basant K. Puri, Andre F. Carvalho, Chiara C. Bortolasci, Ken Walder, Wolfgang Marx
Free Radical Biology and Medicine. 2021; 172: 101
[Pubmed]  [Google Scholar] [DOI]
63 Equipment-free and visual detection of Pb2+ ion based on curcumin-modified bacterial cellulose nanofiber
Elham Sheikhzadeh, Sara Naji-Tabasi, Asma Verdian, Simin Kolahi-Ahari
Journal of the Iranian Chemical Society. 2021;
[Pubmed]  [Google Scholar] [DOI]
64 Utilizing pharmacological properties of polyphenolic curcumin in nanotechnology
G. Elanthendral, N. Shobana, R. Meena, Prakash P, Antony V. Samrot
Biocatalysis and Agricultural Biotechnology. 2021; 38: 102212
[Pubmed]  [Google Scholar] [DOI]
65 Chalcone and its analogs: Therapeutic and diagnostic applications in Alzheimer’s disease
Pritam Thapa, Sunil P. Upadhyay, William Z. Suo, Vikas Singh, Prajwal Gurung, Eung Seok Lee, Ram Sharma, Mukut Sharma
Bioorganic Chemistry. 2021; 108: 104681
[Pubmed]  [Google Scholar] [DOI]
66 Leveraging hallmark Alzheimer’s molecular targets using phytoconstituents: Current perspective and emerging trends
Prajakta A. Dhage, Archana A. Sharbidre, Sarada P. Dakua, Shidin Balakrishnan
Biomedicine & Pharmacotherapy. 2021; 139: 111634
[Pubmed]  [Google Scholar] [DOI]
67 Photoinitiators of polymerization with reduced environmental impact: Nature as an unlimited and renewable source of dyes
Guillaume Noirbent, Frédéric Dumur
European Polymer Journal. 2021; 142: 110109
[Pubmed]  [Google Scholar] [DOI]
68 Therapeutic Effects of Curcumol in Several Diseases; An Overview
Sheema Hashem, Sabah Nisar, Geetanjali Sageena, Muzafar A. Macha, Santosh K. Yadav, Roopesh Krishnankutty, Shahab Uddin, Mohammad Haris, Ajaz A. Bhat
Nutrition and Cancer. 2021; 73(2): 181
[Pubmed]  [Google Scholar] [DOI]
69 Bioactive compound from the Tibetan turnip (Brassica rapa L.) elicited anti-hypoxia effects in OGD/R-injured HT22 cells by activating the PI3K/AKT pathway
Hanyi Hua, Hongkang Zhu, Chang Liu, Wenyi Zhang, Jiayi Li, Bin Hu, Yahui Guo, Yuliang Cheng, Fuwei Pi, Yunfei Xie, Weirong Yao, He Qian
Food & Function. 2021; 12(7): 2901
[Pubmed]  [Google Scholar] [DOI]
70 Neuroprotective Effects of Curcumin in Cerebral Ischemia: Cellular and Molecular Mechanisms
Lalita Subedi, Bhakta Prasad Gaire
ACS Chemical Neuroscience. 2021; 12(14): 2562
[Pubmed]  [Google Scholar] [DOI]
71 The potency of heterocyclic curcumin analogues: An evidence-based review
Fiona C. Rodrigues, NV Anil Kumar, Goutam Thakur
Pharmacological Research. 2021; 166: 105489
[Pubmed]  [Google Scholar] [DOI]
72 Caffeine, a natural methylxanthine nutraceutical, exerts dopaminergic neuroprotection
Senthilkumar S. Karuppagounder, Subramaniam Uthaythas, Manoj Govindarajulu, Sindhu Ramesh, Koodeswaran Parameshwaran, Muralikrishnan Dhanasekaran
Neurochemistry International. 2021; 148: 105066
[Pubmed]  [Google Scholar] [DOI]
73 Development of carbon nanotube-based polymer-modified electrochemical sensor for the voltammetric study of Curcumin
Pemmatte A. Pushpanjali, Jamballi G. Manjunatha, Balliamada M. Amrutha, Nagarajappa Hareesha
Materials Research Innovations. 2021; 25(7): 412
[Pubmed]  [Google Scholar] [DOI]
74 The enhanced bioavailability of free curcumin and bioactive-metabolite tetrahydrocurcumin from a dispersible, oleoresin-based turmeric formulation
Sanjib Kumar Panda, Somashekara Nirvanashetty, M. Missamma, Shavon Jackson-Michel
Medicine. 2021; 100(27): e26601
[Pubmed]  [Google Scholar] [DOI]
75 Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease
Md. Jakaria, Abdel Ali Belaidi, Ashley I. Bush, Scott Ayton
Journal of Neurochemistry. 2021;
[Pubmed]  [Google Scholar] [DOI]
76 Therapeutic Potential of Phytoconstituents in Management of Alzheimer’s Disease
Anurag Kumar Singh, Sachchida Nand Rai, Anand Maurya, Gaurav Mishra, Rajendra Awasthi, Anshul Shakya, Dinesh Kumar Chellappan, Kamal Dua, Emanuel Vamanu, Sushil Kumar Chaudhary, M. P. Singh, Adolfo Andrade-Cetto
Evidence-Based Complementary and Alternative Medicine. 2021; 2021: 1
[Pubmed]  [Google Scholar] [DOI]
77 Chinese nutraceuticals and physical activity; their role in neurodegenerative tauopathies
Abdullahi Alausa, Sunday Ogundepo, Barakat Olaleke, Rofiat Adeyemi, Mercy Olatinwo, Aminat Ismail
Chinese Medicine. 2021; 16(1)
[Pubmed]  [Google Scholar] [DOI]
78 Preservation of dendritic spine morphology and postsynaptic signaling markers after treatment with solid lipid curcumin particles in the 5xFAD mouse model of Alzheimer’s amyloidosis
Panchanan Maiti, Zackary Bowers, Ali Bourcier-Schultz, Jarod Morse, Gary L. Dunbar
Alzheimer's Research & Therapy. 2021; 13(1)
[Pubmed]  [Google Scholar] [DOI]
79 Promising Intervention Approaches to Potentially Resolve Neuroinflammation And Steroid Hormones Alterations in Alzheimer’s Disease and Its Neuropsychiatric Symptoms
Catia Scassellati, Antonio Carlo Galoforo, Ciro Esposito, Miriam Ciani, Giovanni Ricevuti, Cristian Bonvicini
Aging and disease. 2021; 12(5): 1337
[Pubmed]  [Google Scholar] [DOI]
80 Role of Natural Plant Products Against Alzheimer’s Disease
Himanshi Varshney, Yasir Hasan Siddique
CNS & Neurological Disorders - Drug Targets. 2021; 20
[Pubmed]  [Google Scholar] [DOI]
81 Antioxidant activities of inula viscosa extract and curcumin on U87 cells induced by beta-amyloid
Ares ALIZADE, Gülüzar ÖZBOLAT
Cukurova Medical Journal. 2021; 46(2): 583
[Pubmed]  [Google Scholar] [DOI]
82 Therapeutic approaches in alzheimer’s disease: ? -amyloid peptide inhibitors
Krishna R Gupta, Chetna P Hiwase, Nikita S Bhandekar, Milind J Umekar
Indian Journal of Pharmacy and Pharmacology. 2020; 7(3): 147
[Pubmed]  [Google Scholar] [DOI]
83 Gas-phase basicity and proton affinity measurements of Alzheimer's disease drugs by the extended kinetic method and a theoretical investigation
Voleti Nagaveni, Rajendiran Karthikraj, Ramesh Kumar Chitumalla, Kotamarthi Bhanuprakash, Mariappandar Vairamani, Sripadi Prabhakar
European Journal of Mass Spectrometry. 2020; 26(6): 388
[Pubmed]  [Google Scholar] [DOI]
84 A Newly Synthesized Rhamnoside Derivative Alleviates Alzheimer’s Amyloid-ß-Induced Oxidative Stress, Mitochondrial Dysfunction, and Cell Senescence through Upregulating SIRT3
Yi Li, Jing Lu, Xin Cao, Hongwei Zhao, Longfei Gao, Peng Xia, Gang Pei
Oxidative Medicine and Cellular Longevity. 2020; 2020: 1
[Pubmed]  [Google Scholar] [DOI]
85 Hydroxypropyl-ß-cyclodextrin as an effective carrier of curcumin – piperine nutraceutical system with improved enzyme inhibition properties
Anna Stasilowicz, Ewa Tykarska, Kornelia Lewandowska, Maciej Kozak, Andrzej Miklaszewski, Joanna Kobus-Cisowska, Daria Szymanowska, Tomasz Plech, Jacek Jenczyk, Judyta Cielecka-Piontek
Journal of Enzyme Inhibition and Medicinal Chemistry. 2020; 35(1): 1811
[Pubmed]  [Google Scholar] [DOI]
86 Diphenylalanin nanofibers-inspired synthesis of fluorescent gold nanoclusters for screening of anti-amyloid drugs
Tayebeh Zohrabi, Amir Amiri-Sadeghan, Mohammad Reza Ganjali, Saman Hosseinkhani
Methods and Applications in Fluorescence. 2020; 8(4): 045002
[Pubmed]  [Google Scholar] [DOI]
87 Role of Curcuminoids and Tricalcium Phosphate Ceramic in Rat Spinal Fusion
Daniel A. Ryan, Jiongjia Cheng, Koichi Masuda, John R. Cashman
Tissue Engineering Part C: Methods. 2020; 26(11): 577
[Pubmed]  [Google Scholar] [DOI]
88 The neuroprotective effect of curcumin against Cd-induced neurotoxicity and hippocampal neurogenesis promotion through CREB-BDNF signaling pathway
Dhondup Namgyal, Sher Ali, Rachna Mehta, Maryam Sarwat
Toxicology. 2020; 442: 152542
[Pubmed]  [Google Scholar] [DOI]
89 Nanotheranostic agents for neurodegenerative diseases
Terry Tetley, Jorge Bernardino de la Serna, Sonia Antoranz Contera, Parasuraman Padmanabhan, Mathangi Palanivel, Ajay Kumar, Domokos Máthé, George K. Radda, Kah-Leong Lim, Balázs Gulyás
Emerging Topics in Life Sciences. 2020; 4(6): 645
[Pubmed]  [Google Scholar] [DOI]
90 Effects of curcuminoids on cognitive deficits in young audiovisually overstimulated mice
Ameema Tariq, Sana Javed, Syeda Mehpara Farhat, Touqeer Ahmed
Food Bioscience. 2020; 35: 100565
[Pubmed]  [Google Scholar] [DOI]
91 Potential Roles of Myeloid Differentiation Factor 2 on Neuroinflammation and Its Possible Interventions
Thura Tun Oo, Wasana Pratchayasakul, Nipon Chattipakorn, Siriporn C. Chattipakorn
Molecular Neurobiology. 2020; 57(11): 4825
[Pubmed]  [Google Scholar] [DOI]
92 Exploring the Promise of Targeting Ubiquitin-Proteasome System to Combat Alzheimer’s Disease
Abdullah Al Mamun, Md. Sahab Uddin, Md. Tanvir Kabir, Sayema Khanum, Md. Shahid Sarwar, Bijo Mathew, Abdur Rauf, Muniruddin Ahmed, Ghulam Md Ashraf
Neurotoxicity Research. 2020; 38(1): 8
[Pubmed]  [Google Scholar] [DOI]
93 Phytochemical-Mediated Glioma Targeted Treatment: Drug Resistance and Novel Delivery Systems
Hang Cao, Xuejun Li, Feiyifan Wang, Yueqi Zhang, Yi Xiong, Qi Yang
Current Medicinal Chemistry. 2020; 27(4): 599
[Pubmed]  [Google Scholar] [DOI]
94 Alzheimer’s Disease, Inflammation, and the Role of Antioxidants
Benjamin Sinyor, Jocelyn Mineo, Christopher Ochner
Journal of Alzheimer's Disease Reports. 2020; 4(1): 175
[Pubmed]  [Google Scholar] [DOI]
95 Substantiation for the Use of Curcumin during the Development of Neurodegeneration after Brain Ischemia
Marzena Ulamek-Koziol, Stanislaw J. Czuczwar, Slawomir Januszewski, Ryszard Pluta
International Journal of Molecular Sciences. 2020; 21(2): 517
[Pubmed]  [Google Scholar] [DOI]
96 Phytochemicals against TNFa-Mediated Neuroinflammatory Diseases
Lalita Subedi, Si Eun Lee, Syeda Madiha, Bhakta Prasad Gaire, Mirim Jin, Silvia Yumnam, Sun Yeou Kim
International Journal of Molecular Sciences. 2020; 21(3): 764
[Pubmed]  [Google Scholar] [DOI]
97 The Emerging Role of Curcumin in the Modulation of TLR-4 Signaling Pathway: Focus on Neuroprotective and Anti-Rheumatic Properties
Maria Antonietta Panaro, Addolorata Corrado, Tarek Benameur, Cantatore Francesco Paolo, Daniela Cici, Chiara Porro
International Journal of Molecular Sciences. 2020; 21(7): 2299
[Pubmed]  [Google Scholar] [DOI]
98 A Curcumin Analog Exhibits Multiple Biologic Effects on the Pathogenesis of Alzheimer’s Disease and Improves Behavior, Inflammation, and ß-Amyloid Accumulation in a Mouse Model
Ih-Jen Su, Hong-Yi Chang, Hui-Chen Wang, Kuen-Jer Tsai
International Journal of Molecular Sciences. 2020; 21(15): 5459
[Pubmed]  [Google Scholar] [DOI]
99 Solid Lipid Curcumin Particles Protect Medium Spiny Neuronal Morphology, and Reduce Learning and Memory Deficits in the YAC128 Mouse Model of Huntington’s Disease
Abeer Gharaibeh, Panchanan Maiti, Rebecca Culver, Shiela Heileman, Bhairavi Srinageshwar, Darren Story, Kristin Spelde, Leela Paladugu, Nikolas Munro, Nathan Muhn, Nivya Kolli, Julien Rossignol, Gary L. Dunbar
International Journal of Molecular Sciences. 2020; 21(24): 9542
[Pubmed]  [Google Scholar] [DOI]
100 Curcumin’s Nanomedicine Formulations for Therapeutic Application in Neurological Diseases
Bahare Salehi, Daniela Calina, Anca Docea, Niranjan Koirala, Sushant Aryal, Domenico Lombardo, Luigi Pasqua, Yasaman Taheri, Carla Marina Salgado Castillo, Miquel Martorell, Natália Martins, Marcello Iriti, Hafiz Suleria, Javad Sharifi-Rad
Journal of Clinical Medicine. 2020; 9(2): 430
[Pubmed]  [Google Scholar] [DOI]
101 Enteromorpha prolifera Extract Improves Memory in Scopolamine-Treated Mice via Downregulating Amyloid-ß Expression and Upregulating BDNF/TrkB Pathway
Seung Yeon Baek, Fu Yi Li, Da Hee Kim, Su Jin Kim, Mee Ree Kim
Antioxidants. 2020; 9(7): 620
[Pubmed]  [Google Scholar] [DOI]
102 Curcumin Inhibits the Primary Nucleation of Amyloid-Beta Peptide: A Molecular Dynamics Study
Irini Doytchinova, Mariyana Atanasova, Evdokiya Salamanova, Stefan Ivanov, Ivan Dimitrov
Biomolecules. 2020; 10(9): 1323
[Pubmed]  [Google Scholar] [DOI]
103 Mechanism of Anti-Cancer Activity of Curcumin on Androgen-Dependent and Androgen-Independent Prostate Cancer
Nurul Azwa Abd. Wahab, Nordin H. Lajis, Faridah Abas, Iekhsan Othman, Rakesh Naidu
Nutrients. 2020; 12(3): 679
[Pubmed]  [Google Scholar] [DOI]
104 Dietary Supplementation with Curcumin Reduce Circulating Levels of Glycogen Synthase Kinase-3ß and Islet Amyloid Polypeptide in Adults with High Risk of Type 2 Diabetes and Alzheimer’s Disease
Rohith N Thota, Jessica I Rosato, Cintia B Dias, Tracy L Burrows, Ralph N Martins, Manohar L Garg
Nutrients. 2020; 12(4): 1032
[Pubmed]  [Google Scholar] [DOI]
105 Nose-to-Brain Delivery of Antioxidants as a Potential Tool for the Therapy of Neurological Diseases
Maria Cristina Bonferoni, Giovanna Rassu, Elisabetta Gavini, Milena Sorrenti, Laura Catenacci, Paolo Giunchedi
Pharmaceutics. 2020; 12(12): 1246
[Pubmed]  [Google Scholar] [DOI]
106 Targeted delivery of curcumin using MgONPs and solid lipid nanoparticles: Attenuates aluminum.induced neurotoxicity in albino rats
Swathi Ganna, RajasekharaReddy Gutturu, Rajesh Megala, Rasajna Nadella, DevaPrasad Raju Borelli, JohnSushma Nannepaga
Pharmacognosy Research. 2020; 12(4): 380
[Pubmed]  [Google Scholar] [DOI]
107 Curcumin and hesperetin attenuate D-galactose-induced brain senescencein vitroandin vivo
Jihye Lee, Yoo Sun Kim, Eunju Kim, Yerin Kim, Yuri Kim
Nutrition Research and Practice. 2020; 14(5): 438
[Pubmed]  [Google Scholar] [DOI]
108 Atherosklerosis and dementia
Anna Zatloukalová, Martin Roubec, David Školoudík, Petr Ambroz, Ondrej Machaczka, Jana Janoutová, Vladimír Janout
Profese online. 2020; 13(1): 17
[Pubmed]  [Google Scholar] [DOI]
109 Natural and Synthetic Derivatives of Hydroxycinnamic Acid Modulating the Pathological Transformation of Amyloidogenic Proteins
Vladimir I. Muronetz, Kseniya Barinova, Sofia Kudryavtseva, Maria Medvedeva, Aleksandra Melnikova, Irina Sevostyanova, Pavel Semenyuk, Yulia Stroylova, Matej Sova
Molecules. 2020; 25(20): 4647
[Pubmed]  [Google Scholar] [DOI]
110 Impact of Curcuma longa extract on the expression level of brain transporters in in vivo model
Marta Bukowska, Anna Bogacz, Marlena Wolek, Przemyslaw L. Mikolajczak, Piotr Olbromski, Adam Kaminski, Boguslaw Czerny
Herba Polonica. 2019; 65(1): 32
[Pubmed]  [Google Scholar] [DOI]
111 Self-assembled nanoparticles composed of glycol chitosan-dequalinium for mitochondria-targeted drug delivery
Sudipta Mallick, Su Jeong Song, Yoonhee Bae, Joon Sig Choi
International Journal of Biological Macromolecules. 2019; 132: 451
[Pubmed]  [Google Scholar] [DOI]
112 Tetrahydrocurcumin epigenetically mitigates mitochondrial dysfunction in brain vasculature during ischemic stroke
Nandan K. Mondal, Jyotirmaya Behera, Kimberly E. Kelly, Akash K. George, Pranav K. Tyagi, Neetu Tyagi
Neurochemistry International. 2019; 122: 120
[Pubmed]  [Google Scholar] [DOI]
113 Codelivery of Plasmid and Curcumin with Mesoporous Silica Nanoparticles for Promoting Neurite Outgrowth
Cheng-Shun Cheng, Tsang-Pai Liu, Fan-Ching Chien, Chung-Yuan Mou, Si-Han Wu, Yi-Ping Chen
ACS Applied Materials & Interfaces. 2019; 11(17): 15322
[Pubmed]  [Google Scholar] [DOI]
114 Byakangelicin as a modulator for improved distribution and bioactivity of natural compounds and synthetic drugs in the brain
Yoon Young Kang, Jihyeon Song, Jun Yeong Kim, Heesun Jung, Woon-Seok Yeo, Yoongho Lim, Hyejung Mok
Phytomedicine. 2019; 62: 152963
[Pubmed]  [Google Scholar] [DOI]
115 Curcuminoid submicron particle ameliorates cognitive deficits and decreases amyloid pathology in Alzheimer’s disease mouse model
Yi-Heng Tai, Yu-Yi Lin, Kai-Chen Wang, Chao-Lin Chang, Ru-Yin Chen, Chia-Chu Wu, Irene H. Cheng
Oncotarget. 2018; 9(12): 10681
[Pubmed]  [Google Scholar] [DOI]
116 Effective suppression of the modified PHF6 peptide/1N4R Tau amyloid aggregation by intact curcumin, not its degradation products: Another evidence for the pigment as preventive/therapeutic “functional food”
Nooshin Bijari, Saeed Balalaie, Vali Akbari, Farhad Golmohammadi, Sajad Moradi, Hadi Adibi, Reza Khodarahmi
International Journal of Biological Macromolecules. 2018; 120: 1009
[Pubmed]  [Google Scholar] [DOI]
117 Pathophysiology and management of alzheimer’s disease: an overview
Ajit Kumar Thakur, Parul Kamboj, Kritika Goswami, Karan Ahuja
Journal of Analytical & Pharmaceutical Research. 2018; 7(2)
[Pubmed]  [Google Scholar] [DOI]
118 Fluorescence of tautomeric forms of curcumin in different pH and biosurfactant rhamnolipids systems: Application towards on-off ratiometric fluorescence temperature sensing
Zeinab Moussa, Mazhar Chebl, Digambara Patra
Journal of Photochemistry and Photobiology B: Biology. 2017; 173: 307
[Pubmed]  [Google Scholar] [DOI]
119 Protective effects of flavonoids against Alzheimer’s disease-related neural dysfunctions
Mahsa Bakhtiari, Yunes Panahi, Javad Ameli, Behrad Darvishi
Biomedicine & Pharmacotherapy. 2017; 93: 218
[Pubmed]  [Google Scholar] [DOI]
120 Alzheimer’s disease: How metal ions define ß-amyloid function
Kasper P. Kepp
Coordination Chemistry Reviews. 2017; 351: 127
[Pubmed]  [Google Scholar] [DOI]
121 Combined in Vitro Cell-Based/in Silico Screening of Naturally Occurring Flavonoids and Phenolic Compounds as Potential Anti-Alzheimer Drugs
Alba Espargaró, Tiziana Ginex, Maria del Mar Vadell, Maria A. Busquets, Joan Estelrich, Diego Muñoz-Torrero, F. Javier Luque, Raimon Sabate
Journal of Natural Products. 2017; 80(2): 278
[Pubmed]  [Google Scholar] [DOI]
122 Curcumin Protects Membranes through a Carpet or Insertion Model Depending on Hydration
Richard J. Alsop, Alexander Dhaliwal, Maikel C. Rheinstädter
Langmuir. 2017; 33(34): 8516
[Pubmed]  [Google Scholar] [DOI]
123 Neuroprotection of Brain Cells by Lipoic Acid Treatment after Cellular Stress
Sara Paradells-Navarro, María Soledad Benlloch-Navarro, María Inmaculada Almansa Frias, Ma. Angeles Garcia-Esparza, Vania Broccoli, María Miranda, José Miguel Soria
ACS Chemical Neuroscience. 2017; 8(3): 569
[Pubmed]  [Google Scholar] [DOI]
124 Optical Spectroscopic and Morphological Characterizations of Curcuminized Silk Biomaterials: A Perspective from Drug Stabilization
Sudipta Panja, Sibaram Behera, Subhas C. Kundu, Mintu Halder
ACS Omega. 2017; 2(10): 6755
[Pubmed]  [Google Scholar] [DOI]
125 Turmeric powder and its derivatives from Curcuma longa rhizomes: Insecticidal effects on cabbage looper and the role of synergists
Wagner de Souza Tavares, Yasmin Akhtar, Gabriel Luiz Padoan Gonçalves, José Cola Zanuncio, Murray B. Isman
Scientific Reports. 2016; 6(1): 303
[Pubmed]  [Google Scholar] [DOI]
126 The metamorphosis of vascular stents: passive structures to smart devices
Purandhi Roopmani,Swaminathan Sethuraman,Santhosh Satheesh,Uma Maheswari Krishnan
RSC Adv.. 2016; 6(4): 2835
[Pubmed]  [Google Scholar] [DOI]
127 Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease
K. G. Goozee,T. M. Shah,H. R. Sohrabi,S. R. Rainey-Smith,B. Brown,G. Verdile,R. N. Martins
British Journal of Nutrition. 2016; 115(03): 449
[Pubmed]  [Google Scholar] [DOI]
128 Green processing of thermosensitive nanocurcumin-encapsulated chitosan hydrogel towards biomedical application
Thi Bich Tram Nguyen, Le Hang Dang, Thi Thanh Thuy Nguyen, Dai Lam Tran, Dai Hai Nguyen, Van Toan Nguyen, Cuu Khoa Nguyen, Thi Hiep Nguyen, Van Thu Le, Ngoc Quyen Tran
Green Processing and Synthesis. 2016; 5(6)
[Pubmed]  [Google Scholar] [DOI]
129 Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes
Jameel Lone,Jae Heon Choi,Sang Woo Kim,Jong Won Yun
The Journal of Nutritional Biochemistry. 2016; 27: 193
[Pubmed]  [Google Scholar] [DOI]
130 Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders
Ranjana Bhandari,Anurag Kuhad
Life Sciences. 2015; 141: 156
[Pubmed]  [Google Scholar] [DOI]
131 Curcumin attenuates inflammatory response and cognitive deficits in experimental model of chronic epilepsy
Harpreet Kaur,Ishan Patro,Kulbhushan Tikoo,Rajat Sandhir
Neurochemistry International. 2015; 89: 40
[Pubmed]  [Google Scholar] [DOI]
132 Reducing Aß load and tau phosphorylation: Emerging perspective for treating Alzheimeræs disease
Jaspreet Kalra,Aamir Khan
European Journal of Pharmacology. 2015; 764: 571
[Pubmed]  [Google Scholar] [DOI]
133 Novel curcumin-based pyrano[2,3-d]pyrimidine anti-oxidant inhibitors for a-amylase and a-glucosidase: Implications for their pleiotropic effects against diabetes complications
Afsoon Yousefi,Reza Yousefi,Farhad Panahi,Samira Sarikhani,Aminreza Zolghadr,Aminollah Bahaoddini,Ali Khalafi-Nezhad
International Journal of Biological Macromolecules. 2015;
[Pubmed]  [Google Scholar] [DOI]
134 The Chemistry of Neurodegeneration: Kinetic Data and Their Implications
Matic Pavlin,Matej Repic,Robert Vianello,Janez Mavri
Molecular Neurobiology. 2015;
[Pubmed]  [Google Scholar] [DOI]
135 Neuroprotective activities of curcumin and quercetin with potential relevance to mitochondrial dysfunction induced by oxaliplatin
Mohammad Waseem,Suhel Parvez
Protoplasma. 2015;
[Pubmed]  [Google Scholar] [DOI]
136 Investigating the effect of gallium curcumin and gallium diacetylcurcumin complexes on the structure, function and oxidative stability of the peroxidase enzyme and their anticancer and antibacterial activities
Parisa Jahangoshaei,Leila Hassani,Fakhrossadat Mohammadi,Akram Hamidi,Khosro Mohammadi
JBIC Journal of Biological Inorganic Chemistry. 2015; 20(7): 1135
[Pubmed]  [Google Scholar] [DOI]
137 Evaluation of phenolic profile, antioxidant and anticancer potential of two main representants of Zingiberaceae family against B164A5 murine melanoma cells
Corina Danciu,Lavinia Vlaia,Florinela Fetea,Monica Hancianu,Dorina E Coricovac,Sorina A Ciurlea,Codruta M Soica,Iosif Marincu,Vicentiu Vlaia,Cristina A Dehelean,Cristina Trandafirescu
Biological Research. 2015; 48(1): 1
[Pubmed]  [Google Scholar] [DOI]
138 Pre-administration of turmeric prevents methotrexate-induced liver toxicity and oxidative stress
Adel Rezaei Moghadam,Soheil Tutunchi,Ali Namvaran-Abbas-Abad,Mina Yazdi,Fatemeh Bonyadi,Daryoush Mohajeri,Mohammad Mazani,Hassan Marzban,Marek J. Los,Saeid Ghavami
BMC Complementary and Alternative Medicine. 2015; 15(1)
[Pubmed]  [Google Scholar] [DOI]
139 Effect of aflatoxin B1 on the seminiferous tubules and the possible protective role of curcumin in adult albino rats (Light and electron microscopic study)
Eman A. El-Kordy,Maha M. Abo Gazia
The Egyptian Journal of Histology. 2015; 38(3): 614
[Pubmed]  [Google Scholar] [DOI]
140 Curcumin, an Active Component of Turmeric (Curcuma longa), and Its Effects on Health
BetÜl Kocaadam,NevIn Sanlier
Critical Reviews in Food Science and Nutrition. 2015; : 00
[Pubmed]  [Google Scholar] [DOI]
141 Gene expression profiling reveals biological pathways responsible for phenotypic heterogeneity between UK and Sri Lankan oral squamous cell carcinomas
Anas A. Saeed,Andrew H. Sims,Stephen S. Prime,Ian Paterson,Paul G. Murray,Victor R. Lopes
Oral Oncology. 2015;
[Pubmed]  [Google Scholar] [DOI]
142 Synthesis and Evaluation of the Anti-Oxidant Capacity of Curcumin Glucuronides, the Major Curcumin Metabolites
Ambar Choudhury,Suganya Raja,Sanjata Mahapatra,Kalyanam Nagabhushanam,Muhammed Majeed
Antioxidants. 2015; 4(4): 750
[Pubmed]  [Google Scholar] [DOI]
143 Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease
Madhuri Venigalla,Erika Gyengesi,Gerald Münch
Neural Regeneration Research. 2015; 10(8): 1181
[Pubmed]  [Google Scholar] [DOI]
144 Precautionary Ellagic Acid Treatment Ameliorates Chronically Administered Scopolamine Induced Alzheimeræs Type Memory and Cognitive Dysfunctions in Rats
Ramandeep Kaur,Sidharth Mehan,Deepa Khanna,Sanjeev Kalra,Shaba Parveen
Pharmacologia. 2015; 6(5): 192
[Pubmed]  [Google Scholar] [DOI]
145 Estimation of curcumin intake in Korea based on the Korea National Health and Nutrition Examination Survey (2008-2012)
Youngjoo Kwon
Nutrition Research and Practice. 2014; 8(5): 589
[Pubmed]  [Google Scholar] [DOI]
146 Supplemental Substances Derived from Foods as Adjunctive Therapeutic Agents for Treatment of Neurodegenerative Diseases and Disorders
Gregory E. Bigford, Gianluca Del Rossi
Advances in Nutrition. 2014; 5(4): 394
[Pubmed]  [Google Scholar] [DOI]
147 Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats
Pranay Srivastava,Rajesh S. Yadav,Lalit P. Chadravanshi,Rajendra K. Shukla,Yogesh K. Dhuriya,Chauhan LKS,Hari N. Dwivedi,Aditiya B. Pant,Vinay K. Khanna
Toxicology and Applied Pharmacology. 2014;
[Pubmed]  [Google Scholar] [DOI]
148 Curcumin-Loaded Nanoparticles Potently Induce Adult Neurogenesis and Reverse Cognitive Deficits in Alzheimer’s Disease ModelviaCanonical Wnt/ß-Catenin Pathway
Shashi Kant Tiwari,Swati Agarwal,Brashket Seth,Anuradha Yadav,Saumya Nair,Priyanka Bhatnagar,Madhumita Karmakar,Manisha Kumari,Lalit Kumar Singh Chauhan,Devendra Kumar Patel,Vikas Srivastava,Dhirendra Singh,Shailendra Kumar Gupta,Anurag Tripathi,Rajnish Kumar Chaturvedi,Kailash Chand Gupta
ACS Nano. 2014; 8(1): 76
[Pubmed]  [Google Scholar] [DOI]
149 Hydrophobic hydration driven self-assembly of curcumin in water: Similarities to nucleation and growth under large metastability, and an analysis of water dynamics at heterogeneous surfaces
Milan Kumar Hazra,Susmita Roy,Biman Bagchi
The Journal of Chemical Physics. 2014; 141(18): 18C501
[Pubmed]  [Google Scholar] [DOI]
150 Biochemical Stabilization of Glucagon at Alkaline pH
Nicholas Caputo,Melanie A. Jackson,Jessica R. Castle,Joseph El Youssef,Parkash A. Bakhtiani,Colin P. Bergstrom,Julie M. Carroll,Matthew E. Breen,Gerald L. Leonard,Larry L. David,Charles T. Roberts,W. Kenneth Ward
Diabetes Technology & Therapeutics. 2014; 16(11): 747
[Pubmed]  [Google Scholar] [DOI]
151 Prenatal Curcumin Administration Reverses Behavioral and Neurochemical Effects and Decreases iNOS and COX-2 Expressions in Ischemic Rat Pups
Maria Valéria Leimig Telles,Maria Elizabeth Pereira Nobre,Lucas Parente Alencar,Keicy Parente de Siqueira,Ada Maria Farias Sousa Borges,Márnya Wellysa Leite Tavares,Isabelle Bernardo Alves,Lara Soares Duarte,Natália Kelly Rodrigues de Lacerda,Glaura Fernandes Teixeira de Alcântara,Débora Amado Scerni,Kelly Rose Tavares Neves,Glauce Socorro de Barros Viana
International Journal of Brain Science. 2014; 2014: 1
[Pubmed]  [Google Scholar] [DOI]
152 Evaluation of Traditional Medicines for Neurodegenerative Diseases Using Drosophila Models
Soojin Lee,Se Min Bang,Joon Woo Lee,Kyoung Sang Cho
Evidence-Based Complementary and Alternative Medicine. 2014; 2014: 1
[Pubmed]  [Google Scholar] [DOI]
153 In vitroacetylcholinesterase inhibitory activity and the antioxidant properties ofAegle marmelosleaf extract: implications for the treatment of Alzheimeræs disease
Md. Asaduzzaman,Md. Josim Uddin,M.A. Kader,A.H.M.K. Alam,Aziz Abdur Rahman,Mamunur Rashid,Kiyoko Kato,Toshihisa Tanaka,Masatoshi Takeda,Golam Sadik
Psychogeriatrics. 2014; 14(1): 1
[Pubmed]  [Google Scholar] [DOI]
154 Mitochondria-targeting particles
Amaraporn Wongrakpanich,Sean M Geary,Mei-ling A Joiner,Mark E Anderson,Aliasger K Salem
Nanomedicine. 2014; 9(16): 2531
[Pubmed]  [Google Scholar] [DOI]
155 Epigenetic impact of curcumin on stroke prevention
Anuradha Kalani,Pradip K. Kamat,Komal Kalani,Neetu Tyagi
Metabolic Brain Disease. 2014;
[Pubmed]  [Google Scholar] [DOI]
156 Synthesis and in vitro localization study of curcumin-loaded SPIONs in a micro capillary for simulating a targeted drug delivery system
Mohammed Anwar,Mohammed Asfer,Ayodhya P. Prajapati,Sharmistha Mohapatra,Sohail Akhter,Asgar Ali,Farhan J. Ahmad
International Journal of Pharmaceutics. 2014; 468(1-2): 158
[Pubmed]  [Google Scholar] [DOI]
157 Biological activity, design, synthesis and structure activity relationship of some novel derivatives of curcumin containing sulfonamides
Jaggi Lal,Sushil K. Gupta,D. Thavaselvam,Dau D. Agarwal
European Journal of Medicinal Chemistry. 2013; 64: 579
[Pubmed]  [Google Scholar] [DOI]
158 Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice
N. Rajasekar,Subhash Dwivedi,Santosh kumar Tota,Pradeep Kumar Kamat,Kashif Hanif,Chandishwar Nath,Rakesh Shukla
European Journal of Pharmacology. 2013; 715(1-3): 381
[Pubmed]  [Google Scholar] [DOI]
159 Mitochondrial dysfunction mediated cisplatin induced toxicity: Modulatory role of curcumin
Mohammad Waseem,Suhel Parvez
Food and Chemical Toxicology. 2013; 53: 334
[Pubmed]  [Google Scholar] [DOI]
160 Acetylcholinesterase inhibitory activity of phlorotannins isolated from the brown alga, Ecklonia maxima (Osbeck) Papenfuss
Rengasamy R.R. Kannan,Mutalib A. Aderogba,Ashwell R. Ndhlala,Wendy A. Stirk,Johannes Van Staden
Food Research International. 2013; 54(1): 1250
[Pubmed]  [Google Scholar] [DOI]
161 Curcumin as inhibitor of mammalian Cathepsin B, Cathepsin H, acid phosphatase and alkaline phosphatase: a correlation with pharmacological activities
Indu Ravish,Neera Raghav
Medicinal Chemistry Research. 2013;
[Pubmed]  [Google Scholar] [DOI]
162 Comparative docking and ADMET study of some curcumin derivatives and herbal congeners targeting β-amyloid
Dev Bukhsh Singh, Manish Kumar Gupta, Rajesh Kumar Kesharwani, Krishna Misra
Network Modeling Analysis in Health Informatics and Bioinformatics. 2013;
[HTML Full text]  [Google Scholar] [DOI]
163 Chemical constituents and their acetyl cholinesterase inhibitory and antioxidant activities from leaves of Acanthopanax henryi: potential complementary source against Alzheimer’s disease
Xiao Dan Zhang,Xiang Qian Liu,Yang Hee Kim,Wan Kyunn Whang
Archives of Pharmacal Research. 2013;
[Pubmed]  [Google Scholar] [DOI]
164 Marine-derived bioactive materials for neuroprotection
Ratih Pangestuti,Se-Kwon Kim
Food Science and Biotechnology. 2013; 22(5): 1
[Pubmed]  [Google Scholar] [DOI]
165 Mechanistic Insights of Curcumin Interactions with the Core-Recognition Motif of ß-Amyloid Peptide
Priyadharshini Kumaraswamy,Swaminathan Sethuraman,Uma Maheswari Krishnan
Journal of Agricultural and Food Chemistry. 2013; 61(13): 3278
[Pubmed]  [Google Scholar] [DOI]
166 Amelioration of ß-amyloid-induced cognitive dysfunction and hippocampal axon degeneration by curcumin is associated with suppression of CRMP-2 hyperphosphorylation
Yunliang Wang,Honglei Yin,Jinfeng Li,Yuzhen Zhang,Bing Han,Zhilei Zeng,Nana Qiao,Xiaomei Cui,Jiyu Lou,Jing Li
Neuroscience Letters. 2013; 557: 112
[Pubmed]  [Google Scholar] [DOI]
167 Protective effect of curcumin against chronic alcohol-induced cognitive deficits and neuroinflammation in the adult rat brain
V. Tiwari,K. Chopra
Neuroscience. 2013; 244: 147
[Pubmed]  [Google Scholar] [DOI]
168 Preclinical studies of potential amyloid binding PET/SPECT ligands in Alzheimeræs disease
Marie M. Svedberg,Obaidur Rahman,Håkan Hall
Nuclear Medicine and Biology. 2012; 39(4): 484
[Pubmed]  [Google Scholar] [DOI]
169 Bioinorganic Chemistry of Alzheimer’s Disease
Kasper P. Kepp
Chemical Reviews. 2012; 112(10): 5193
[Pubmed]  [Google Scholar] [DOI]
170 Influence of curcumin on the Al(iii)-induced conformation transition of silk fibroin and resulting potential therapy for neurodegenerative diseases
Teng Jiang,Guang-Rong Zhou,Yue-Hong Zhang,Ping-Chuan Sun,Qi-Ming Du,Ping Zhou
RSC Advances. 2012; 2(24): 9106
[Pubmed]  [Google Scholar] [DOI]
171 Curcumin and neurodegenerative diseases: a perspective
Altaf S Darvesh,Richard T Carroll,Anupam Bishayee,Nicholas A Novotny,Werner J Geldenhuys,Cornelis J Van der Schyf
Expert Opinion on Investigational Drugs. 2012; 21(8): 1123
[Pubmed]  [Google Scholar] [DOI]
172 Voltammetric determination of curcumin in spices
G. K. Ziyatdinova,A. M. Nizamova,H. C. Budnikov
Journal of Analytical Chemistry. 2012; 67(6): 591
[Pubmed]  [Google Scholar] [DOI]
173 Neurodegenerative Shielding by Curcumin and Its Derivatives on Brain Lesions Induced by 6-OHDA Model of Parkinsonæs Disease in Albino Wistar Rats
Shyam Sunder Agrawal,Sumeet Gullaiya,Vishal Dubey,Varun Singh,Ashok Kumar,Ashish Nagar,Poonam Tiwari
Cardiovascular Psychiatry and Neurology. 2012; 2012: 1
[Pubmed]  [Google Scholar] [DOI]
174 Fabrication and characterization of curcumin-releasing silk fibroin scaffold
Naresh Kasoju,Utpal Bora
Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2012; 100B(7): 1854
[Pubmed]  [Google Scholar] [DOI]
175 Inhibitory effect of curcumin on the Al(III)-induced Aß42 aggregation and neurotoxicity in vitro
Teng Jiang,Xiu-Ling Zhi,Yue-Hong Zhang,Luan-Feng Pan,Ping Zhou
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2012; 1822(8): 1207
[Pubmed]  [Google Scholar] [DOI]
176 Interaction of curcumin with Al(III) and its complex structures based on experiments and theoretical calculations
Teng Jiang, Long Wang, Sui Zhang, Ping-Chuan Sun, Chuan-Fan Ding, Yan-Qiu Chu, Ping Zhou
Journal of Molecular Structure. 2011;
[HTML Full text]  [Google Scholar] [DOI]
177 Stress Proteins and Glial Cell Functions During Chronic Aluminium Exposures: Protective Role of Curcumin
Pooja Khanna Sood, Uma Nahar, Bimla Nehru
Neurochemical Research. 2011;
[HTML Full text]  [Google Scholar] [DOI]
178 Structure-based drug discovery of ApoE4 inhibitors from the plant compounds
Kh. Dhanachandra Singh, M. Karthikeyan, P. Kirubakaran, V. Sathya, S. Nagamani
Medicinal Chemistry Research. 2011;
[HTML Full text]  [Google Scholar] [DOI]
179 Neuroprotective effects of marine algae
Pangestuti, R., Kim, S.-K.
Marine Drugs. 2011; 9(5): 803-818
[Pubmed]  [Google Scholar]
180 Genetics of dementia
Padilla, C., Isaacson, R.S.
CONTINUUM Lifelong Learning in Neurology. 2011; 17(2): 326-342
[Pubmed]  [Google Scholar]
181 Curcumin: A promising antiamyloidogenic agent
Saljoughian, M.
U.S. Pharmacist. 2011; 36(8): 27-32
[Pubmed]  [Google Scholar]
182 Genetics of Dementia
Claudia Padilla,Richard S. Isaacson
CONTINUUM: Lifelong Learning in Neurology. 2011; 17: 326
[Pubmed]  [Google Scholar] [DOI]
183 Dairy constituents and neurocognitive health in ageing
David A. Camfield, Lauren Owen, Andrew B. Scholey, Andrew Pipingas, Con Stough
British Journal Of Nutrition. 2011; : 1
[HTML Full text]  [Google Scholar] [DOI]
184 Neuroprotective Effects of Marine Algae
Ratih Pangestuti,Se-Kwon Kim
Marine Drugs. 2011; 9(12): 803
[Pubmed]  [Google Scholar] [DOI]
185 Neurotoxicity of β-amyloid protein: Oligomerization, channel formation and calcium dyshomeostasis
Kawahara, M.
Current Pharmaceutical Design. 2010; 16(25): 2779-2789
[Pubmed]  [Google Scholar]
186 Alzheimeræs disease: The pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners
Wollen, K.A.
Alternative Medicine Review. 2010; 15(3): 223-244
[Pubmed]  [Google Scholar]
187 Current treatments for patients with Alzheimer disease
Osborn, G.G., Saunders, A.V.
Journal of the American Osteopathic Association. 2010; 110(9): s16-s26
[Pubmed]  [Google Scholar]
188 Curcumin: Multiple molecular targets mediate multiple pharmacological actions - A review
Shehzad, A., Lee, Y.S.
Drugs of the Future. 2010; 35(2): 113-119
[Pubmed]  [Google Scholar]
189 Involvement of PPAR-gamma in curcumin-mediated beneficial effects in experimental dementia
Puneet Rinwa, Baljinder Kaur, Amteshwar Singh Jaggi, Nirmal Singh
Naunyn-Schmiedeberg s Archives of Pharmacology. 2010; 381(6): 529
[HTML Full text]  [Google Scholar] [DOI]
190 Differential outcome of schizophrenia: Does cultural explanation suffice?
Gangadhar, B.N., Thirthalli, J.
Asian Journal of Psychiatry. 2009; 2(2): 53-54
[Pubmed]  [Google Scholar]
191 Optimized turmeric extracts have potent anti-amyloidogenic effects
Douglas Shytle, R., Bickford, P.C., Rezai-Zadeh, K., Hou, L., Zeng, J., Tan, J., Sanberg, P.R., Alberte, R.S.
Current Alzheimer Research. 2009; 6(6): 564-571
[Pubmed]  [Google Scholar]
192 Effect of curcumin on amyloidogenic property of molten globule-like intermediate state of 2,5-diketo-d-gluconate reductase A
Sarkar, N., Narain Singh, A., Dubey, V.K.
Biological Chemistry. 2009; 390(10): 1057-1061
[Pubmed]  [Google Scholar]
193 Differential outcome of schizophrenia: Does cultural explanation suffice?
Bangalore N. Gangadhar,Jagadisha Thirthalli
Asian Journal of Psychiatry. 2009; 2(2): 53
[Pubmed]  [Google Scholar] [DOI]
194 Nanostructured Peptide Fibrils Formed at the Organic-Aqueous Interface and Their Use as Templates To Prepare Inorganic Nanostructures
Kanishka Biswas, C. N. R. Rao
ACS Applied Materials & Interfaces. 2009; 1(4): 811
[Pubmed]  [Google Scholar] [DOI]

 

Read this article